摘要
从数据驱动角度,结合随机矩阵理论(RMT)和Spiked模型,研究了电力系统异常状态感知方法和关键节点辨识方法.提出了基于样本协方差矩阵最大特征值(MESCM)的电力系统异常状态感知方法;在此基础上引入Spiked模型对其进行改进,实现了电力系统异常状态的动态感知;以系统电压数据为原始数据,结合熵理论提取了数据有效信息,对电力系统网络的关键节点进行辨识.通过模拟分析和实际检测验证了该方法具有抗噪性能高、计算耗时少的优点,提高了电力系统异常状态感知模型的准确度和鲁棒性.该方法有效反映了电力系统异常状态的演化方向及其分布,可用于支持电力系统预防、检修和运维,辅助电力系统决策.