摘要
针对现代大型系统中系统日志的异常检测问题,提出了一种基于自动日志分析的异常检测方法(CSCM).该方法通过在预聚类下结合细化分析与多视角的异常提取过程,来实现系统日志的异常检测.首先,引入信息熵以提取日志信息量;其次,基于Canopy预聚类过程提取子集交叠数据,以缩小计算范围;利用谱聚类进行细化分析,并结合预聚类结果以优化初始化问题;最后,通过关联不同视角下的日志分析,分别提出显性与隐性异常对象的定义,基于稀疏簇质心的分析和异常度的计算,识别出异常日志.实验结果表明,提出的检测方法能够准确有效地识别系统日志中的异常值.