摘要

铜转炉吹炼是火法炼铜的关键工序,其终点判断与炉寿、铜产率和直收率紧密相关,目前现有人工经验、仪器测定和物料平衡法等终点判断方法均存在一定的局限性。理论上铜转炉吹炼造渣期终点与渣含Fe是否达标有关,而不同Fe含量渣样呈现不同的图像特征,鉴于此,基于图形识别的特征向量提取原理,分别采用卷积神经网络(CNN)算法与支持向量机(SVM)算法,构建了铜转炉吹炼造渣期渣含Fe预测模型,为图像识别技术在铜转炉吹炼终点判断中的应用奠定数模基础。两种模型的实例分析表明,卷积神经网络的训练集预测准确率98%,测试集预测准确率约50%;支持向量机模型的训练集预测准确率99%,测试集预测准确率62%。