摘要

针对标准容积卡尔曼滤波(cubature Kalman filter, CKF)在载体状态突变时滤波精度下降的问题,提出了一种基于多重渐消因子的强跟踪SVDCKF组合导航(strong tracking SVDCKF integrated navigation algorithm based on multiple fading factors, MST-SVDCKF)算法。该算法引入SVD代替标准CKF中的Cholesky分解,提高了状态协方差阵分解迭代时的数值稳定性;通过卡方检验对系统状态进行评估,当系统出现状态突变时,采用多重渐消因子对预测状态协方差阵进行调节,使得不同滤波通道具有不同的渐消能力,以实现对载体真实状态的强跟踪。仿真结果表明,与标准CKF和传统STCKF相比,该算法调节能力更强,滤波精度更高。