摘要

目的为提取可充分表达图像语义信息的图像特征,减少哈希检索中的投影误差,并生成更紧致的二值哈希码,提出一种基于密集网络和改进的监督核哈希方法。方法用训练优化好的密集网络提取图像的高层语义特征;先对提取到的图像特征进行核主成分分析投影,充分挖掘图像特征中隐含的非线性信息,以减少投影误差,再利用监督核哈希方法对图像特征进行监督学习,将特征映射到汉明空间,生成更紧致的二值哈希码。结果为验证提出方法的有效性、可拓展性以及高效性,在Paris6K和LUNA16(lung nodule analysis 16)数据集上与其他6种常用哈希方法相比,所提方法在不同哈希码长下的平均检索精度均较高,且在哈希码长为64 bit时,平均检索精度达到最高,分别为89. 2%和92. 9%;与基于卷积神经网络的哈希算法(convolution neural network Hashing,CNNH)方法相比,所提方法的时间复杂度有所降低。结论提出一种基于密集网络和改进的监督核哈希方法,提高了图像特征的表达能力和投影精度,具有较好的检索性能和较低的时间复杂度;且所提方法的可拓展性也较好,不仅能够有效应用到彩色图像检索领域,也可以应用在医学灰度图像检索领域。