摘要

针对风电场风电功率波动性强,中长期风功率预测精度不高的问题,本文提出了一种基于高层气象数据的风电场中长期风功率预测方法。首先通过规则化和规范化高层气象数据,找出并完善与风功率强相关的气象因素;其次,结合大气运动方程与和下降梯度方程,建立高层气象数据的演变物理模型;随后,采用大数据聚类和挖掘等算法,对多维度海量高层大气数据进行分类,并基于数据对推导的高层大气数据模型进行训练和修正;最后,基于模型和大数据机器学习方法,构建高层大气运动数据和风电场历史数据之间规律,采用统计分析与物理模型相结合方法,对风电场中长期风功率进行预测。通过结合中国西南某地的风资源数据对某风电场中长期风功率进行预测,证明本文提出的方法能有效提高风电场中长期风功率预测精度。

  • 单位
    贵州电网有限责任公司