摘要

乳腺癌是最常见的恶性肿瘤之一,也是仅次于肺癌死亡的第二大凶手。乳腺恶性肿瘤的准确迅速诊断对于癌症的治疗有着重要的意义。模式识别机器学习算法用于乳腺肿瘤的辨识可有效弥补传统诊断方法辨识精度的不足。提出一种支持向量机递归特征消去(Support Vector Machine Recursive Feature Elimination,SVM-RFE)与灰狼优化支持向量分类(Grey Wolf Optimal Support Vector Classification,GWO-SVC)的组合算法。用SVM-RFE对乳腺肿瘤数据的30条属性进行约简,将属性约简后得到的18条属性数据用于GWO-SVC学习建模,发现训练集分类准确率高达99.33%,测试集分类准确率高达99.11%,耗时只需2.12 s。通过对比不同的智能算法分类结果表明,该方法具有较高的辨识精度与泛化能力。