摘要
基于深度学习的边缘检测算法需要大量的标注,这阻碍了边缘检测的推广应用。因此提出一种伪监督边缘检测算法,能够在无标注的手绘图像数据集上提取图像边缘。算法分成三部分,包括伪监督标签生成、多尺度边缘检测网络和特征增强模块。伪监督标签为多尺度监督的边缘检测网络生成监督信息,特征增强模块可以弥补伪监督带来的信息丢失。该算法比现有边缘检测算法提取的边缘更完整,在手绘数据集QMUL-Shoe和QMUL-Chair上可以提高1%~6%的检索精度,对需要边缘检测的所有领域都有启发性意义。
- 单位
基于深度学习的边缘检测算法需要大量的标注,这阻碍了边缘检测的推广应用。因此提出一种伪监督边缘检测算法,能够在无标注的手绘图像数据集上提取图像边缘。算法分成三部分,包括伪监督标签生成、多尺度边缘检测网络和特征增强模块。伪监督标签为多尺度监督的边缘检测网络生成监督信息,特征增强模块可以弥补伪监督带来的信息丢失。该算法比现有边缘检测算法提取的边缘更完整,在手绘数据集QMUL-Shoe和QMUL-Chair上可以提高1%~6%的检索精度,对需要边缘检测的所有领域都有启发性意义。