摘要
针对航空发动机剩余使用寿命(RUL)预测方法没有同时加权不同时间步下的数据,包括原始数据和所提取的特征,导致RUL预测准确性较低的问题,提出了一种基于优化混合模型的RUL预测方法。首先,选用三种不同的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入至卷积神经网络(CNN)和Bi-LSTM网络中。然后,采用融合多路径特征预测的思想,将上述提取到的特征融合后输入至全连接网络获得RUL预测结果。最后,使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证方法的有效性。实验结果显示,所提方法在4个数据集上均有较好的表现。以FD001数据集为例,所提方法的均方根误差(RMSE)比Bi-LSTM网络降低了9.01%。
- 单位