基于特征融合与降维的印刷套准识别方法

作者:简川霞; 林子嘉; 杜美剑; 吴一凡; 谢俊生
来源:包装工程, 2019, 40(21): 242-249.
DOI:10.19554/j.cnki.1001-3563.2019.21.036

摘要

目的针对单一方面特征难以准确表达印刷标志套准状态的问题,研究印刷标志图像多维特征提取、融合和降维的印刷套准识别方法。方法提取印刷标志图像的灰度共生矩阵、Tamura纹理特征、灰度差分统计特征和灰度梯度共生矩阵表达其纹理,并采用主成分分析法对融合后的多维特征进行降维处理,得到主特征。将印刷标志图像的主特征数据分成训练集和测试集。支持向量机模型通过对训练集的学习确定模型参数,然后在测试集上验证模型的性能。结果文中建议方法在测试集上的识别准确率为99%,训练集对支持向量机模型的训练时间为1.9327 s,模型在测试集上的识别时间为0.0307 s,模型的总体时间(训练时间和识别时间之和)为1.9634s。结论文中建议方法优于采用单一方面特征的识别准确率;同时在不影响识别准确率的情况下,优于未PCA降维方法的模型训练时间、识别时间和总体时间。

全文