摘要
针对遥感图像中小目标检测精度低以及漏检现象严重的问题,提出一种基于YOLOv4改进的遥感小目标检测算法。该算法首先改进特征提取网络,删除深层次特征层,减少语义丢失现象;其次将轻量级注意力机制与RFB-S结构融合,拓展感受野,并加强网络对重要信息的关注程度,从而提升检测精度;最后使用Focal Loss函数解决正负样本不均衡问题,抑制背景目标,进一步增强检测效果。在RSOD数据集上的实验结果表明,改进后算法检测平均精度为96.5%,召回率达到87.2%,检测效果明显提升,有效改善了小目标漏检现象,对遥感图像小目标检测具有重要意义。
-
单位电子信息工程学院; 河北工业大学