摘要

传统模型在锂电池充电剩余时间预测中的泛化能力受到一定约束。针对此问题,提出一种基于独立长短期记忆循环神经网络(IndyLSTM)的锂电池充电剩余时间预测方法。通过对锂电池充电过程数据的分析,利用IndyLSTM在处理序列化数据时可以长期记忆历史数据的优势,对充电剩余时间进行预测。采用美国国家航空航天局(NASA)公开的电池数据,与常规的LSTM和SVR模型进行实验对比,IndyLSTM预测结果在准确性和稳定性方面表现更好。