混沌麻雀搜索优化算法

作者:吕鑫; 慕晓冬*; 张钧; **
来源:北京航空航天大学学报, 2021, 47(08): 1712-1720.
DOI:10.13700/j.bh.1001-5965.2020.0298

摘要

针对麻雀搜索算法(SSA)在接近全局最优时,种群多样性减少,易陷入局部最优解等问题,提出了一种混沌麻雀搜索优化算法(CSSOA)。首先,通过改进Tent混沌序列初始化种群,提高初始解的质量,增强算法的全局搜索能力。其次,引入高斯变异的方法,加强局部搜索能力,提高搜索精度;同时以搜索停滞的解为基础产生Tent混沌序列,用此混沌序列对部分陷入局部最优的个体进行混沌扰动,促使算法跳出限制继续搜索。最后,对12个基准函数进行仿真实验。结果表明:所提算法能够克服SSA易陷入局部最优的缺点,提高算法的搜索精度、收敛速度和稳定性。同时,将CSSOA应用到简单图像分割问题,验证了CSSOA应用于实际工程问题的可行性。

全文