摘要

城市短期燃气负荷具有高随机性和复杂性特征,利用单一的模型难以做出准确预测。以某城市民用类燃气日负荷为研究对象,在分析该市两年多燃气日负荷特征的基础上,建立了基于BP神经网络(BPNN)-经验模态分解(EMD)-长短期记忆(LSTM)神经网络的组合预测模型,对该市短期燃气日负荷进行了预测。首先通过BPNN模型学习温度、日期属性影响下燃气负荷的主要特征,增长趋势等次要特征则体现在BPNN模型预测产生的残差中;然后采用EMD算法分解残差得到有限个本征模函数(IMF),并利用LSTM模型学习各IMF分量的短期时序规律,将各IMF分量的预测值相加得到残差预测值;最后将两部分预测值代数相加得到最终的预测结果。实证结果表明:与单一的LSTM模型和BPNN-LSTM模型相比,该组合预测模型半月步长的平均绝对误差为3.4%,预测精度更高,是一种更为有效的城市短期燃气负荷预测方法。