摘要

胭脂红是一种应用广泛的食品色素,在各种食品、饮料的添加剂里都有它的身影,过量食用人工合成色素会严重危害健康。食物中色素一般都是多种联用,各种色素之间会相互产生干扰,这加大了对食品中色素检测的难度,模拟食品中多种色素共存的环境,采用荧光光谱技术,结合PSO-SVM算法,建立一种测定混合溶液中胭脂红含量的方法。从试剂公司购买胭脂红和苋菜红固体粉末,选择胭脂红为待检测色素,苋菜红为干扰色素,配成不同浓度的胭脂红单色溶液以及加入苋菜红后的混合溶液样本,其中胭脂红的浓度在0.1~30μg·mL-1之间,干扰色素苋菜红的浓度在0.1~10μg·mL-1之间随意添加。运用Edinburgh Instruments公司生产的FS920稳态荧光光谱仪,测得胭脂红单色溶液与加入苋菜红后混合溶液的荧光光谱图,分析得到胭脂红的最佳激发波长为λex=326nm,最佳发射波长为λem=430nm。各选取6组不同浓度的单色样本以及混合色素样本,其中,胭脂红的物质浓度同为3,4,5,6,7和8μg·mL-1,苋菜红的物质浓度都定在2μg·mL-1。观察6组样本在激发波长λex=326nm时的发射光谱和荧光强度的关系。单色样本中,胭脂红浓度与荧光强度线性关系良好;而在混合溶液中,随着胭脂红浓度的增加,荧光强度呈现出先降后增再降的过程,光谱线型、强度与各组分浓度间存在复杂的非线性关系,得以证明混合溶液的荧光光谱并不是由各组分光谱简单的叠加,而是在吸收光谱的过程中,胭脂红溶液与苋菜红溶液存在竞争和相互影响。配取25组胭脂红、苋菜红混合溶液,从中选择7个作为预测样本,其余18组作为训练样本。7个预测样本中胭脂红的浓度分别为1.0,2.0,4.0,6.0,9.0,12和15μg·mL-1,干扰物质苋菜红的物质浓度在0.1~10μg·mL-1之间。选择各组样本在最佳激发波长λex=326nm下对应的荧光强度,作为检测模型的输入,以胭脂红的预测浓度作为输出。对PSO参数初始化设置后,训练输出SVM的最佳参数c和g,将所得的最佳参数输入PSO-SVM模型,得到7组预测样本的浓度预测结果分别为:1.146 9,1.860 6,3.854 4,6.1469,9.133 8,11.857 6和14.859 8μg·mL-1。分析PSO-SVM的预测结果,得到胭脂红平均回收率为100.84%,预测均方根误差(RMSEP)为1.03×10-4,模型输出与真实值之间的相关系数是0.999。在同等条件下,采用误差逆向传播算法(BP)预测得到的7组样本浓度分别为:1.140 1,2.139 8,3.188 2,6.4362,8.882 7,11.860 1和12.664 3μg·mL-1,其平均回收率为98.56%,均方根误差为4.65×10-3,输出值与真实值之间的相关系数为0.972。与误差逆向传播算法(BP)的预测结果相比较,PSO-SVM相关系数高出2.7%,平均回收率高出0.6%,均方根误差降低了将近一个数量级。分析结果表明,通过荧光光谱技术与PSO-SVM相结合的方法,能够有效的避开干扰色素的影响,准确的测定混合溶液中胭脂红的含量,并且效果相比较于BP更加理想。