针对无监督字典学习算法图像分类精度不高的问题,提出一种结合多种图像特征的有监督字典学习分类算法。利用卷积神经网络检测和分割细胞以提取细胞结构形状纹理特征,在细胞对应的病理图像块中提取多种纹理特征后,提取全图的SIFT和SURF特征。为缩小分类误差,对无监督字典学习和二分类函数进行联合训练,将多特征取代图像作为字典学习输入,最终实现乳腺病理图像分类。在2个乳腺病理数据库上的实验结果表明,多特征监督字典学习分类算法的分类准确率达92.15%,优于无监督字典学习算法。