摘要
针对变压器故障检测速率较慢的问题,通过对基于量子神经网络的变压器故障诊断方法的分析,发现该方法有较高的精度,但是速率较慢,不能达到实时性、快速性的要求。因此提出基于主元分析优化量子神经网络的变压器故障诊断方法。利用主元分析进行故障数据降维,选取主成分累计贡献率高于85%的主元代替原有的7个故障气体含量数据,用降维后的数据作为网络的输入,应用量子优势消除数据相关性,最终对变压器的故障做出判断。利用变压器故障实验数据信息库中的故障数据分别对量子神经网络、主元分析优化量子神经网络进行仿真研究,结果表明在故障识别率不变的情况下,所提方法使得诊断速率得到大幅提升。
- 单位