摘要

在齿轮箱的故障诊断中,将原始故障信号利用小波包变换进行降噪处理。采用时域分析方法提取特征参数,同时进行小波包能量特征提取。利用主元分析法可以对提取的特征参数进行降维处理,根据累计贡献率选取一定量的主元,再带入概率神经网络进行故障诊断分类并进行交叉验证。本文选取了四种不同裂纹等级的齿轮与正常状态下的齿轮进行模拟实验,结果显示主元分析法与概率神经网络的结合可以很好的分辨出不同程度的故障齿轮。

全文