摘要
针对网络模型执行过程耗时过长的问题,受到像素切割网络架构中的编解码结构启发,设计了一种高效的轻量级主干网络,使用深度可分离卷积作为基本的卷积模块,利用了多维自学习模块(Multidimensional Self-Learning Module, MSLM)对特征矩阵进行自适应的学习来增强有用信息权重,同时使用编解码结构对其主干结构进行效率上的优化,设计出了深度可分离网络(Codec Depth Separable Network, CSDNet),相比于MobileNet性能提升了72%,精度提升了5.2%。
-
单位通信与信息工程学院; 金陵科技学院; 南京邮电大学