摘要

通过面部表情、语音语调以及脑电等生理信号对人的情绪状态进行识别分类,即情绪识别,其在医疗、交通以及教育等领域有广泛应用。脑电信号由于其真实可靠,在情绪识别领域日益得到广泛关注。总结了近年来脑电情绪识别研究所取得的进展,主要介绍基于深度学习和迁移学习进行的脑电情绪识别研究。介绍了脑电情绪识别基础理论、常用公开数据集、信号的采集和预处理,介绍特征提取与选择,重点介绍了深度学习和迁移学习在脑电情绪识别上的应用。指出该领域目前面临的挑战和前景。