摘要

针对音乐信号中的歌声与伴奏相互关联难以分离的问题,提出了一种区分性训练深度神经网络(Deep Neural Network,DNN)的音乐分离方法。首先,在DNN模型的基础上同时考虑歌声与伴奏间的重建误差和区分性信息,提出了一种改进的目标函数进行区分性训练;其次,在DNN模型上额外添加一层,引入时频掩蔽对估计出的歌声伴奏进行联合优化,相应的时域信号由傅里叶逆变换获得;最后,验证不同参数设置对分离性能的影响,并与现有的音乐分离方法进行对比.实验结果表明,改进的目标函数和时频掩蔽的引入明显提高了DNN的分离性能,且与现有的音乐分离方法相比分离性能最高提高了4 dB从而证实所提方法是一种有效的音乐分离方法。

全文