摘要
随着激光雷达等三维点云获取工具的快速发展,点云的语义信息在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域更具重要意义。针对基于分割块特征匹配的点云语义分割方法无法处理过分割和欠分割点云块、行道树和杆状物的语义分割精度低等问题,提出了一种基于分割块合并策略的行道树和杆状物点云语义分割方法,该方法可对聚类分割后感兴趣的分割块进行合并,通过计算其多维几何特征实现对合并后的物体分类,并使用插值优化算法对分割结果进行优化,最终实现城市道路环境下行道树和杆状物的语义分割。实验结果表明,所提方法可将城市道路环境下的行道树、杆状物等点云数据的召回率和语义分割精度平均提升至89.9%以上。基于分割块合并的语义分割方法,可以很好地解决城市道路下行道树和杆状物语义分割精度低等问题,该方法对于三维场景感知等问题的研究具有重要意义。
- 单位