基于改进AdaBoost.M2算法的自动调制识别方法

作者:王沛; 刘春辉*; 张多纳
来源:北京航空航天大学学报, 2023, 49(08): 2089-2098.
DOI:10.13700/j.bh.1001-5965.2021.0577

摘要

针对同族调制类型通信信号识别难度大、深度学习模型普遍存在泛化能力弱的问题,基于经典AdaBoost.M2算法,提出改进样本权重的AdaBoost.M2算法,用于解决大样本情况下学习率与加权后样本数据难以相适应的问题。改进后的新样本权重确保训练样本数据的数量级在加权后不变,并使算法更迅速地关注到难分类样本,提高了弱分类器综合性能,降低了加权投票模型中弱分类器重要性之间的差异。针对部分样本的统计特性易淹没于噪声中造成难分类问题,提出随机特征裁剪方法,使算法避免过度关注异常特征,降低了极难分类样本对AdaBoost.M2算法性能的负面影响,提升了算法的泛化能力,并以低信噪比数据进行实验验证。针对调制类型同族信号难分类的问题,选取同族调制类型的通信信号开展模型训练和测试。实验结果表明:相比于单一卷积长短时记忆全连接深度网络(CLDNN)算法,改进AdaBoost.M2算法对低信噪比PSK族类和QAM族类通信信号的测试集准确率分别提高了8.5%和11.25%,相比于直接集成CLDNN的经典AdaBoost.M2算法,测试集准确率分别提高了8.25%和6.5%。

全文