摘要
针对复杂商品背景下喷码字符漏喷、重叠、缺失等现象,提出一种基于YOLOv5+CRNN的喷码字符检测算法。喷码字符定位算法以YOLOv5为基础网络,结合注意力机制提高其检测精度,再通过稀疏训练和通道剪枝降低模型参数量与复杂度,最终检测精度提高了3.4个百分点,模型参数量降低了6.7 MB。对定位后的字符区域进行背景擦除和透视变换处理后送入CRNN网络实现喷码字符识别,最终将改进后的算法部署至NVIDIA TX2嵌入式平台。通过在食品包装工厂生产流水线实测,检测速度达到28 frame/s,字符定位精度99.4%,识别率95%,且具有很好的鲁棒性。
-
单位电子工程学院; 中国科学院自动化研究所; 广西师范大学