摘要

在非线性系统中,粒子滤波需要大量粒子才能保证状态估计的准确度,这降低了算法的实时性,导致故障诊断的准确率和实时性不佳。针对该问题,提出基于GPU平台的粒子群优化粒子滤波(PSOPF)并行算法。通过分析PSOPF算法的并行性,设计并实现一种基于CUDA并行计算架构的PSOPF并行算法,利用大量的GPU线程对算法进行加速。为解决拒绝重采样对GPU全局内存的非合并访问带来的执行效率低问题,通过改进拒绝重采样并行算法,使线程束中的线程对同一内存区段中的粒子进行重采样,提高了其执行效率。通过对风力机组变桨距系统故障诊断验证了算法的有效性。实验结果表明,该方法可满足故障诊断准确率和实时性的要求。