摘要

为发掘卷积神经网络在协同过滤预测中的潜力,针对神经自回归模型方法和支持向量机在深度学习中的优势,提出基于深度神经向量机自回归的协同过滤方法。通过将神经网络最后一层的激发函数替换为线性支持向量回归函数的方式,学习基于最小边缘的对数损失。在多个公开数据集上的实验结果表明,该算法在深度神经自回归对协同过滤问题实现较好预测的基础上,线性向量回归函数的使用能更好地提升预测效果。