摘要

基于门控循环单元(GRU)的神经网络,构建预测模型的网络拓扑结构,训练和测试了HL-2A装置等离子体水平位移系统响应模型。测试结果显示了该模型对43%的样本数据的拟合度超过80%。把该网络模型作为被控对象,使用基于径向基函数(RBF)神经网络的模型参考自适应控制(MRAC)算法,设计了一个HL-2A等离子体水平位移的MRAC系统。仿真结果显示,该控制系统的输出响应能快速地跟踪各种输入参考信号,控制器能够较好地控制等离子体的水平位移并具有强的抗扰动能力。

  • 单位
    成都理工大学工程技术学院; 核工业西南物理研究院