摘要

为实时诊断番茄叶片水分胁迫程度,提出一种叶片水分胁迫程度的诊断方法,该诊断方法包括2部分:叶片分割和水分胁迫程度分类。采用以ResNet101为特征提取卷积网络的Mask R-CNN网络对背景遮挡的番茄叶片进行实例分割通过迁移学习将Mask R-CNN在COCO数据集上预训练得到的权重用于番茄叶片的实例分割,保留原卷积网络的训练参数,只调整全连接层。利用卷积网络提取的特征,可将番茄叶片分割视为区分叶片与背景的一个二分类问题,以此来分割受到不同水分胁迫的番茄叶片图像。利用微调后的DenseNet169图像分类模型进行叶片水分胁迫程度分类,通过迁移学习将DenseNet169在ImageNet数据集上预训练得到的权重用于番茄叶片水分胁迫程度的分类保持DenseNet169卷积层的参数不变,只训练全连接层并对原DenseNet169全连接层进行了修改,将分类数量从1 000修改为3。试验共采集特征明显的无水分胁迫、中度胁迫和重度胁迫3类温室番茄叶片图像共2 000幅图像,建立数据集,并进行模型训练与测试。试验结果表明,训练后的Mask R-CNN叶片实例分割模型在测试集上对于单叶片和多叶片的马修斯相关系数平均为0.798,分割准确度平均可达到94.37%。经过DenseNet169网络训练的叶片水分胁迫程度分类模型在测试集上的分类准确率为94.68%与VGG-19、AlexNet这2种常用的深度学习分类模型进行对比,分类准确率分别提高了5.59、14.68个百分点,表明本文方法对温室番茄叶片水分胁迫程度实时诊断有较好的效果,可为构建智能化的水胁迫分析技术提供参考。