摘要
基于无线传感网络水质监测中水温数据质量差、预测精度低、稳定性差等问题,提出一种遗传算法(GA)优化改进极限学习机(SELM)的工厂化水产养殖水温预测模型(GA-SELM)。首先,在分析水温影响因素的基础上,通过天气指数的计算对无线传感网络中采集的异常数据进行校正;然后通过皮尔森相关分析研究影响因子与水温之间的关系;最后,采用Softplus函数作为ELM的激活函数,利用GA算法获取ELM的最佳初始权值和偏置,实现工厂化水产养殖水温预测。实验结果表明,GA-SELM模型有较好的预测性能,与传统BP神经网络、标准ELM网络模型和GA优化ELM算法相比,GA-SELM的预测指标MAE、MAPE和RMSE分别为0.154 3、0.005 4和0.187 6,性能均优于其他算法,能高效、稳定地实现水温的预测。
-
单位中国水产科学研究院淡水渔业研究中心; 江南大学; 江苏信息职业技术学院; 农业部