摘要
安全在人机协作过程中是至关重要的,必须实时掌握人的行为信息,并进行准确高效的预测。基于Linux和ROS系统搭建仿真环境,通过Xtion PRO LIVE深度相机采集多组人体关节的空间位置信息,然后通过无监督学习方法对采集到的坐标点进行聚类和预测,实时更新预测模型,并基于minimum-jerk对特殊异常轨迹进行预测。为了充分保证人的安全,主要研究手部和肘部运动轨迹的预测方法。最终实验结果证明,所提出的分层轨迹预测框架可以很好地描述人体运动轨迹,并实时做出准确的预测,不仅保证了人体安全,而且对于提高生产效率具有重要意义。
- 单位