摘要

针对K-Means聚类算法利用均值更新聚类中心,导致聚类结果受样本分布影响的问题,提出了神经正切核K-Means聚类算法(NTKKM)。首先通过神经正切核(NTK)将输入空间的数据映射到高维特征空间,然后在高维特征空间中进行K-Means聚类,并采用兼顾簇间与簇内距离的方法更新聚类中心,最后得到聚类结果。在car和breast-tissue数据集上,对NTKKM聚类算法的准确率、调整兰德系数(ARI)及FM指数这3个评价指标进行统计。实验结果表明,NTKKM聚类算法的聚类效果以及稳定性均优于K-Means聚类算法和高斯核K-Means聚类算法。NTKKM聚类算法与传统的K-Means聚类算法相比,准确率分别提升了14.9%和9.4%,ARI分别提升了9.7%和18.0%,FM指数分别提升了12.0%和12.0%,验证了NTKKM聚类算法良好的聚类性能。