基于GWO-CNN-BiLSTM的超短期风电预测

作者:程杰; 陈鼎; 李春; 钟伟东; 严婷; 窦春霞*
来源:科学技术与工程, 2023, 23(35): 15091-15099.

摘要

在未来高渗透率风电场景下,超短期风电功率预测研究对于实现电力系统优化运行具有重要意义。为此,提出一种基于GWO-CNN-BiLSTM的超短期风电预测方法。首先,搭建基于卷积神经网络(convolutional neural network, CNN)与双向长短期记忆神经网络(bidirectional long short term memory, BiLSTM)的组合模型,然后,为提升风电预测结果的精度,通过灰狼优化算法(grey wolf optimizer, GWO)对组合模型进行优化,使该组合模型参数能实时适应风电历史数据。最后,仿真结果验证了所提出方法的有效性和优越性。