摘要

针对行人检测算法在交通场景下应用时的遮挡问题,提出一种结合双重注意力机制的遮挡感知行人检测算法。以RetinaNet作为基础框架,在回归和分类支路分别添加空间注意力和通道注意力子网络,增强网络对于行人可见区域的关注;同时引入行人可见边界框信息对传统的回归损失函数进行优化,使其能够随着遮挡程度自适应地调节预测框贡献的权重。在Caltech和CityPerson数据集上的实验结果表明:相较于RetinaNet等8种先进算法,该方法具有较好的鲁棒性和检测精度,尤其是严重遮挡情况下,该算法的对数平均漏检率仅为45.69%,小于其他算法12%以上;此外,该算法能够实现准实时检测,在Caltech和CityPerson上的检测速度分别为11.8帧/s和10.0帧/s。所提出的双重注意力机制和遮挡感知回归损失函数的检测方法具有可行性和有效性,对于遮挡行人的处理有显著优势。