摘要

电池剩余电量(SOC)的估算是电池管理系统中的关键技术之一,在众多估算方法中,神经网络在估算的准确性及鲁棒性上具有明显优势。庞大的数据量是获得SOC精确值的重要因素。针对以上问题,研究提出了基于BP人工神经网络的动力电池SOC估算方法,以某型号整包电池作为实验对象,通过对电池电压、电流、内阻及温度的数据采集,获得海量数据。建立电池的等效电路模型,考虑电池极化、充放电倍率及温度的影响对初始数据进行修正。基于MATLAB平台建立BP人工神经网络模型,数据修正后用于网络模型的训练,并验证了模型的可行性。将模型用于实验数据的预测,通过函数拟合实现了SOC的估算。最后,通过对比SOC的预测值与实际测量值,最终证明建立的人工神经网络模型对SOC估算的有效性。