摘要
螺纹刀具的状态监测是制造加工中非常重要的问题。由于刀具振动信号具有复杂非线性、强耦合等关系,常用的基于支持向量机(SVM)的刀具监测模型由于参数的设置极其依赖人为经验,设置不当会导致监测的识别率不高,在刀具磨损状态判别中收到了限制。针对此难题,依据螺纹刀具的振动特性,结合改进的粒子群算法(PSO),采用异步更新学习因子策略实现刀具状态监测模型优化。结果表明,优化后的PSO-SVM刀具状态监测模型能够有效对SVM的关键参数进行寻优,异步更新学习因子也可加强模型在迭代后期的寻优能力,从而提高刀具状态监测识别的精度。
- 单位