摘要

随机森林分类算法在产生决策树以及投票流程中各个决策树的分类准确度各不相同,由此带来的问题是少部分决策树会影响随机森林算法的整体分类性能。除此以外,数据集中的不平衡数据也能影响到决策树的分类精度。针对以上缺点,对Bootstrap抽样方法添加约束条件,以降低非平衡数据对生成决策树的影响;以及利用袋外数据(Outof-Bagging)和非平衡系数对生成的决策树进行评估加权。试验结果表明,所提算法改善了随机森林对不平衡数据的分类精度。