摘要
精准的负荷预测关系着电力系统安全、经济和可靠运行,短期负荷预测一直是电力系统的重要研究方向之一。结合深度学习理论,基于MXNet深度学习框架,采用深度神经网络算法预测配电网公变短期负荷,考虑负荷自身历史运行状态、气象因素、变压器属性、电力用户特征等多重因素影响,对传统电力负荷预测进行了创新和探索,并通过在某省的实际应用效果表明,基于MXNet框架的深度神经网络模型训练效率良好。基于深度神经网络的短期负荷预测模型有很强的泛化能力与通用性,为不同地区、不同类型的公变建立个性化的预测模型提供了可行方法。模型部署于阿里云大数据平台,基于阿里云大数据实现了配电网公变日负荷的实时预测。