摘要

单步多框检测器(Single Shot Multibox Detector,SSD)是一种优秀的目标检测模型,但是其对额外层的处理方式还需要进一步提升。因此,利用深度可分离卷积的思想设计新的深度可分离卷积模块改进模型中的额外层,采用紧邻特征图融合方法加强特征复用,综合设计了改进的目标检测模型(Modified SSD,MSSD)。该模型在VOC 2007和VOC 2012训练集上进行训练后,在VOC 2007测试集上进行测试。当输入尺寸为300×300时,它的平均精度均值(mean Average Precision,mAP)可达79.1%,相比原来的77.2%提高了1.9%,且检测速度可达55 f/s。同SSD的各类变体对比,MSSD的性能具有一定的优势,在速度和精度上取得了较好的平衡性。

全文