摘要
针对水电机组空蚀信号非平稳和非线性的特点,提出一种基于经验模态分解-BP神经网络(EMDBPNN)的空蚀故障混合特征提取与分类方法。首先对空蚀信号进行经验模态分解,得到一系列的本征模态函数(IMFs),提取各IMFs分量的能量特征和奇异值特征,同时提取常规的时域和频域特征,构建混合特征向量;然后将此向量作为神经网络的输入,对水电机组空载工况、导叶30%开度和满负荷运行等三种工况下的空蚀数据进行识别分类。试验结果显示,该方法能够对水电机组空蚀故障进行准确诊断,具有较强的工程应用价值。
-
单位湖北白莲河抽水蓄能有限公司; 华中科技大学