摘要

研究垃圾邮件过滤准确率问题,电子邮件是一种高维、复杂的特殊文本,单一支持向量机、K近邻等传统模型均难以识别垃圾邮件,导致过滤正确率低。为了提高了垃圾邮件过滤正确率,提出一种K近邻和支持向量机相融合的垃圾邮件过滤模型(SVM-KNN)。首先将邮件特征向量输入到支持向量机学习,找到支持向量集,然后计算待识别邮件与最优超平面间的距离,距离大于阈值,便采用支持向量机识别邮件类型,否则用K近邻识别邮件类型。仿真结果表明,SVM-KNN很好地解决单一模型存在的难题,提高了垃圾邮件过滤正确率,是一种有效的电子邮件管理的手段。