摘要

基于电子计算机断层扫描(CT)的肺结节检测的早期筛查是降低肺癌死亡率的重要手段,而近年来三维卷积神经网络(3D CNN)已经在肺结节检测领域取得了成功并不断深入发展。本文提出了一种基于多尺度注意力机制的3D CNN肺结节检测算法。针对肺结节大小和形状各异的特点,设计了一个多尺度的特征提取模块,提取不同尺度的相应特征。通过注意力模块,从空间和通道两个角度挖掘特征间的关联信息,对特征加强。提取出的特征进入类似金字塔的融合机制,使得特征中同时包含深层的语义信息与浅层的位置信息,更利于目标定位与边界框回归。在具有代表性的LUNA16数据集上,相对于目前先进的其他方法,本文方法能够明显地提高检测灵敏度,可为临床医学提供理论参考。