摘要
视觉目标检测旨在定位和识别图像中存在的物体,属于计算机视觉领域的经典任务之一,也是许多计算机视觉任务的前提与基础,在自动驾驶、视频监控等领域具有重要的应用价值,受到研究人员的广泛关注。随着深度学习技术的飞速发展,目标检测取得了巨大的进展。首先,本文总结了深度目标检测在训练和测试过程中的基本流程。训练阶段包括数据预处理、检测网络、标签分配与损失函数计算等过程,测试阶段使用经过训练的检测器生成检测结果并对检测结果进行后处理。然后,回顾基于单目相机的视觉目标检测方法,主要包括基于锚点框的方法、无锚点框的方法和端到端预测的方法等。同时,总结了目标检测中一些常见的子模块设计方法。在基于单目相机的视觉目标检测方法之后,介绍了基于双目相机的视觉目标检测方法。在此基础上,分别对比了单目目标检测和双目目标检测的国内外研究进展情况,并展望了视觉目标检测技术发展趋势。通过总结和分析,希望能够为相关研究人员进行视觉目标检测相关研究提供参考。
- 单位