近年来微分方程在科学研究和工程应用中得到了广泛的使用.随着分数阶非线性偏微分方程的诞生,探讨分数阶非线性偏微分方程的精确解成为一个重要问题.利用行波变换将时间分数阶Huxley方程转化为等价的微分方程,再分别利用推广的Kudryashov方法和齐次平衡法对时间分数阶Huxley方程进行求解,利用分数阶微分算子的性质,经过一系列复杂的计算得到Huxley方程的精确解.进一步探讨两种不同方法得到精确解的区别.