基于改进支持向量机的微震初至波到时自动拾取方法

作者:李铁牛; 胡宾鑫*; 李化坤; 耿文成; 郝鹏程; 纪旭波; 孙增荣; 朱峰; 张华; 阳铖权
来源:工矿自动化, 2023, 49(03): 63-69.
DOI:10.13272/j.issn.1671-251x.2022050081

摘要

微震初至波到时拾取是实现微震震源高精度定位的重要前提。传统的人工拾取方法效率低,而自动拾取方法在低信噪比条件下难以准确拾取初至波到时。针对上述问题,提出了一种基于改进支持向量机(SVM)的微震初至波到时自动拾取方法。首先,对原始微震数据进行归一化处理、线性校正和适当裁剪,将微震数据的振幅、能量和相邻时刻的能量比作为特征对数据标记不同类别;然后采用粒子群优化(PSO)算法和网格搜索法优化SVM的惩罚参数和核函数参数,即先利用PSO算法对参数进行大范围的快速定位,得到初步最优解,再以该解为初始位置重新构建参数搜索区间,设置小步长的网格搜索法对参数进行精细搜寻,得到最优参数,并将该最优参数代入SVM模型进行训练,得到改进SVM模型;最后根据改进的SVM模型对微震数据进行分类识别,定义微震波第1个采样点对应的时刻为初至波到时。采用某矿井下微震监测数据进行实验,结果表明:该方法对微震初至波到时的拾取准确率达96.5%,平均拾取误差为3.8 ms,在低信噪比情况下仍可对微震初至波到时进行准确拾取,拾取精度高于自动拾取方法中常用的长短时窗能量比(STA/LTA)法。

全文