摘要
针对传统诊断方法难以有效提取故障特征的问题,提出了一种基于格拉姆角场(GAF)与TL-ResNeXt相结合的故障诊断方法。首先利用GAF对原始振动信号编码为时间序列相关的二维特征图;再将这些特征图输入到层级更深的分组残差网络ResNeXt中进行自动的识别、分类;模型训练的同时,在网络的最后一层结合了迁移学习(TL)模块以加快模型特征提取能力、快速的进行学习。为了验证该方法的有效性,利用凯斯西储大学轴承数据对比了其他方法,结果表明该方法表现最优。且在轧机模拟实验平台上收集的轴承故障数据表明,该方法在改变工况时同样具有好的泛化性与识别能力。
- 单位