摘要

针对工人和任务进行匹配是空间众包研究的核心问题之一,但已有的方法通常会忽略工人路径对任务分配结果产生的影响.传统的任务分配方法存在计算速度慢、适用范围小和协作效果不突出等问题.本文从空间众包平台的角度出发研究面向路网的空间众包任务分配问题,以任务完成时间最短为目标,提出了考虑工人路径规划的基于多智能体强化学习的QMIX-A*算法,缩短任务的平均完成时间,进而提高用户的满意度.大量的数值仿真研究验证了QMIX-A*的有效性和稳定性,为空间众包服务平台的任务分配与路径优化策略的选择提供决策支持.

全文