摘要

为了解决无人机巡检光伏组件的效率和识别准确率低的问题,提出了一种基于超分辨率和双池化融合的光伏组件缺陷检测方法。首先,使用生成对抗网络(GAN)对光伏组件图像数据进行扩展,建立可用于光伏电站缺陷目标检测的图像数据集;然后,构建图像超分辨网络,减小图像数据集的噪声和提高局部区域的纹理特征。最后,将单次多边框检测(SSD)的主干网络替换为双池化方式融合的特征提取网络(VGG19_MP),在不提高网络参数的情况下,学习更深层次的纹理结构。结果表明基于超分辨率网络和双池化融合的光伏组件缺陷检测算法精确率达到了98.21%,平均检测时间为0.066 s,相较于对比的检测算法提高了0.9%~9.1%,平均检测时间提高了0.01~0.07 s,为光伏组件缺陷的精确识别提供了更有效的检测方法。