摘要
深入分析电商行业的用户个性化数据并提供推荐服务近年来已成为业界的热点。推荐服务的基础是对用户的潜在兴趣进行挖掘,并对商品的感兴趣程度进行预测。因此,以此为背景,研究用户对商品的评分预测。对电商业的关系型数据在推荐系统中的应用进行了研究,提出了通过使用网络表示学习进行评分预测的方法。首先,将关系型数据构建成异构网络,用户和商品为网络中的节点。然后,设计了兼顾网络结构信息和节点之间相似性的个性化异构网络采样方法,并对节点进行表示学习。最后,将学习到的用户、商品表示向量输入到神经网络中进行训练,利用优化后的神经网络模型进行评分预测。实验结果表明:所提方法在YELP 13、Movielens 100k、Movielens 1m数据集上都有较高的准确率,对比常用方法,准确率提升6.5%以上。
- 单位