摘要
基于位置社交网络(LBSN)的兴趣点(POI)推荐算法是近年来的研究热点,有效的POI推荐具有极大的经济和社会效益;针对LBSN中的数据稀疏问题、用户细粒度兴趣(即用户的长期和短期兴趣)序列建模问题和联合多种影响因素的POI推荐问题,研究一种结合矩阵分解和带有注意力机制深度学习技术的POI推荐模型(CF-ADNN);一方面,构造特征矩阵缓解签到数据稀疏问题,通过矩阵分解得到隐藏因子,计算POI的特征向量;另一方面,构建一种带注意力机制的用户细粒度兴趣的序列建模方式,有效学习用户长期和短期的兴趣特征,提高POI推荐精确度;结合上述两种方法,最终得到可以融合多种影响因素的POI推荐模型;并通过对比试验,进一步验证模型的推荐效果。
- 单位