摘要
二维手部姿态估计是人机交互领域的一项关键技术。为增强复杂环境下系统鲁棒性,提高手势姿态估计精度,提出一种基于目标检测和热图回归的YOLOv3-HM算法。首先,利用YOLOv3算法从RGB图像中识别框选手部区域,采用CIoU作为边界框损失函数;然后,结合热图回归算法对手部的21个关键点进行标注;最终,通过回归手部热图实现二维手部姿态估计。分别在FreiHAND数据集与真实场景下进行测试,结果表明,该算法相较于传统手势检测算法在姿态估计精度和检测速度上均有所提高,对手部关键点的识别准确率达到99.28%,实时检测速度达到59 f/s,在复杂场景下均能精准实现手部姿态估计。
-
单位自动化学院; 南京信息工程大学